592 research outputs found

    Magnus force and acoustic Stewart-Tolman effect in type II superconductors

    Full text link
    At zero magnetic field we have observed an electromagnetic radiation from superconductors subjected by a transverse elastic wave. This radiation has an inertial origin, and is a manifestation of the acoustic Stewart-Tolman effect. The effect is used for implementing a method of measurement of an effective Magnus force in type II superconductors. The method does not require the flux flow regime and allows to investigate this force for almost the whole range of the existence of the mixed state. We have studied behavior of the gyroscopic force in nonmagnetic borocarbides and Nb. It is found that in borocarbides the sign of the gyroscopic force in the mixed state is the same as in the normal state, and its value (counted for one vortex of unit length) has only a weak dependence on the magnetic field. In Nb the change of sign of the gyroscopic force under the transition from the normal to the mixed state is observed.Comment: 4 pages, 5 figure

    Non-dissipative drag of superflow in a two-component Bose gas

    Full text link
    A microscopic theory of a non-dissipative drag in a two-component superfluid Bose gas is developed. The expression for the drag current in the system with the components of different atomic masses, densities and scattering lengths is derived. It is shown that the drag current is proportional to the square root of the gas parameter. The temperature dependence of the drag current is studied and it is shown that at temperature of order or smaller than the interaction energy the temperature reduction of the drag current is rather small. A possible way of measuring the drag factor is proposed. A toroidal system with the drag component confined in two half-ring wells separated by two Josephson barriers is considered. Under certain condition such a system can be treated as a Bose-Einstein counterpart of the Josephson charge qubit in an external magnetic field. It is shown that the measurement of the difference of number of atoms in two wells under a controlled evolution of the state of the qubit allows to determine the drag factor.Comment: 13 pages, 3 figures. This preprint is extended and substantially revised variant of related preprint cond-mat/040456

    Acoustic characteristics of FeSe single crystals Acoustic characteristics of FeSe single crystals

    Full text link
    The results of the comprehensive ultrasonic research of high quality single crystals of FeSe are presented. Absolute values of sound velocities and their temperature dependences were measured; elastic constants and Debye temperature were calculated. The elastic C11-C12 and C11 constants undergo significant softening under the structural tetra-ortho transformation. The significant influence of the superconducting transition on the velocity and attenuation of sound was revealed and the value of the superconducting energy gap was estimated.Comment: 5 pages, 7 figures, 1 tabl

    Study of magnetoelastic interaction in MnF2_2 by the acoustoelectric transformation method

    Full text link
    The mechanisms of magnetoelastic interaction in MnF2_2 are studied using the method of acoustoelectric transformation. The temperature dependence of the piezomagnetic coupling coefficient and its anisotropy are determined in the antiferromagnetic phase. We observe a new effect consisting in the appearance of a non-diagonal component of the magnetic susceptibility tensor, which is proportional to the square of the order parameter, under the action of the shear wave. A phenomenological interpretation of the effect, which takes into account a small-angle rotation of the crystal lattice, is presented. In the paramagnetic state, the effect of acoustic deformation is reduced to the modulation of the diagonal component of the susceptibility tensor

    Elastic anomalies in HoNi2B2C single crystals

    Full text link
    We have measured temperature and magnetic field dependencies of the sound velocities and the sound attenuation in HoNi2B2C single crystals. The main result is a huge softening the velocity of C66 mode due to a cooperative Jahn-Teller effect, resulting in a tetragonal-orthorhombic structural phase transition. Anomalies in the behavior of the C66 mode through various magnetic phase transitions permit us to revise the low temperature H-T phase diagrams of this compound.Comment: v2: a discussion of the C44 mode with the comparison to Y borocarbide was adde

    Characteristics of the electric field accompanying a longitudinal acoustic wave in a metal. Anomaly in the superconducting phase

    Full text link
    The temperature dependence of the amplitude and phase of the electric potential arising at a plane boundary of a conductor when a longitudinal acoustic wave is incident normally on it is investigated theoretically and experimentally. The surface potential is formed by two contributions, one of which is spatially periodic inside the sample, with the period of the acoustic field; the second is aperiodic and arises as a result of an additional nonuniformity of the electron distribution in a surface layer of the metal. In the nonlocal region the second contribution is dominant. The phases of these contributions are shifted by approximately \pi /2. For metals in the normal state the experiment is in qualitative agreement with the theory. The superconducting transition is accompanied by catastrophically rapid vanishing of the electric potential, in sharp contrast to the theoretical estimates, which predict behavior similar to the BCS dependence of the attenuation coefficient for a longitudinal sound.Comment: 9 pages, 6 figure

    Critical currents and giant non-dissipative drag for superfluid electron-hole pairs in quantum Hall multilayers

    Full text link
    Superfluid properties of electron-hole pairs in a quantum Hall four-layer system are investigated. The system is considered as a solid state realization of a two-component superfluid Bose gas with dipole-dipole interaction. One superfluid component is formed in the top bilayer and the other component - in the bottom one. We obtain the dispersion equation for the collective mode spectrum and compute the critical parameters (the critical interlayer distance and the critical currents) versus the filling factor. We find that the critical currents of the components depend on each other. The maximum critical current of a given component can be reached if the current of the other component is equal to zero. The non-dissipative drag effect between the components is studied. It is shown that in the system considered the drag factor is very large. Under appropriate conditions it can be about 10 per sent, that is at least in three order larder than one predicted for two-component atomic Bose gases.Comment: 18 pages, 7 figure
    • …
    corecore